

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

DISCIPLINE SPECIFIC ELECTIVES (DSE-3)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/Practice		
Transmission Lines, Antenna and Wave Propagation	4	3	-	1	Class XII passed with Physics + Mathematics/Applied Mathematics + Chemistry OR Physics + Mathematics/Applied Mathematics + Computer Science/Informatics Practices	Electromagnetics (DSC 14, Sem V)

Learning Objectives

The Learning Objectives of this course are as follows:

- Fundamentals of propagation of electromagnetic waves.
- Basics of transmission lines along with its parameters.
- Wave propagation in different modes of the waveguides.
- Antenna parameters and its radiation mechanism.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand reflection and transmission of uniform plane wave.
- Explain the functioning of transmission line and its performance parameters.
- Understand wave propagation in waveguides and different modes of propagation.
- Explain the radiation mechanism and characteristics of an antenna.

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

SYLLABUS OF ELDSE-4C

Total Hours- Theory: 45 Hours, Practicals: 30 Hours

UNIT – I (11 Hours)

Electromagnetic Wave Propagation: Plane Wave reflection at Oblique Incidence:- Laws of Reflection, Snell's Law of Refraction, Parallel and Perpendicular polarisations, Fresnel's Equations and Brewster Angle, Wave propagation in dispersive media, Concept of phase velocity and group velocity

UNIT – II (11 Hours)

Transmission Lines: Typical Transmission lines- Coaxial, Two-Wire, Microstrip and Coplanar, Transmission Line Parameters, Transmission Line Equations, Wave propagation in Transmission lines:- lossy, lossless and Distortionless lines, Input Impedance, Standing Wave Ratio, Power, Shorted Line, Open-Circuited Line and Matched Line, Quarter wave transformer as transmission line application.

UNIT – III (11 Hours)

Waveguides: Introduction to Parallel plate waveguide, Rectangular waveguide, Transverse Electromagnetic (TEM), Transverse Magnetic (TM) and Transverse Electric (TE) modes, cutoff frequency and dominant mode, Intrinsic Impedance, Power transmission and attenuation:- conductor loss and dielectric loss and Rectangular cavity resonator and its resonant frequency.

UNIT – IV (12 Hours)

Antenna: Concept of retarded potentials, Radiation Mechanism, types of antennas, power radiated by Hertzian dipole and its radiation resistance, qualitative analysis of half-wave dipole and quarter-wave monopole antenna, Antenna characteristics, Radiation Pattern, Beamwidth, Bandwidth, Radiation Intensity, Directive Gain, Directivity, Power Gain, Radiation Efficiency, Input Impedance, Effective Area and the Friis Transmission Equation.

Practical component (if any) – Transmission Lines, Antenna and Wave Propagation (MATLAB/SCILAB /Any other softwares)

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the phasor and its graphical representation for electromagnetic fields.
- Learn reflection and transmission of plane electromagnetic wave.
- Represent graphically various parameters of transmission line.
- Plot field configuration for different modes of the waveguide.
- Understand the radiation pattern and other characteristics of an antenna.

This document is prepared from the following University Notifications

- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem1.pdf
- https://www.du.ac.in/uploads/new-web/notifications-2021/28032023_nep-Faculty%20of%20Interdisciplinary%20&%20Applied%20Sciences.pdf
- https://www.du.ac.in/uploads/new-web/15092023_Indis_sem3.pdf
- https://www.du.ac.in/uploads/new-web/18092023_Inter_4.pdf

LIST OF PRACTICALS (Total Practical Hours – 30 Hours)

1. Program to determine the phasor of forward propagating field
2. Program to determine the instantaneous field of a plane wave
3. Program to find the electric and magnetic fields of reflected and transmitted wave at the interface of different types of media
4. Program to find the characteristic impedance and the phase constant of a distortionless line
5. Program to find the power dissipated of the lossy transmission line
6. Program to find the total power transmitted through the lossless transmission line
7. Program to plot the field configuration for TE and TM modes in waveguide
8. Program to determine the operating range of frequency for TE10 mode of air filled rectangular waveguide
9. Program to determine Directivity, Bandwidth and Beamwidth of an antenna.
10. Program to plot the radiation pattern of a Hertzian dipole and calculate its radiation resistance.

Note: Students shall sincerely work towards completing all the above listed practicals for this course. In any circumstance, the completed number of practicals shall not be less than nine.

Essential/recommended readings

1. M. N. O. Sadiku, Principles of Electromagnetics, Oxford University Press (2001)
2. Karl E. Longren, Sava V. Savov, Randy J. Jost., Fundamentals of Electromagnetics with MATLAB, PHI
3. J. A. Edminster, Electromagnetics, Schaum Series, Tata McGraw Hill (2006)
4. N. Narayan Rao, Elements of Engineering Electromagnetics, Pearson Education (2006)
5. G. S. N. Raju, Antennas and Propagation, Pearson Education (2001)
Transmission Lines,

Suggestive readings

1. W. H. Hayt and J.A. Buck, Engineering Electromagnetics, Tata McGraw Hill (2006)
2. D. C. Cheng, Field and Wave Electromagnetics, Pearson Education (2001)

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.